"

Ⓜ️雷竞技app官方版下载Ⓜ️全球品牌Ⓜ️雷竞技app官方版下载Ⓜ️千万款游戏集于一体Ⓜ️雷竞技app官方版下载Ⓜ️原生态App,迎战世界杯7x24服务,期待您的到来!

<bdo id="o62iu"></bdo>
<bdo id="o62iu"></bdo>
  • <bdo id="o62iu"><blockquote id="o62iu"></blockquote></bdo>
  • <bdo id="o62iu"><optgroup id="o62iu"></optgroup></bdo>
    <code id="o62iu"><nav id="o62iu"></nav></code>
    <code id="o62iu"><samp id="o62iu"></samp></code>
  • "

    李泽峰

    邮箱:
    zefengli@ustc.edu.cn
    个人主页:
    科研领域:
    1. 人工智能地震学,将人工智能应用于地震数据处理、地震科学规律发现,其中包括地震监测、地震预警、震源过程、地球内部结构等; 2. 分布式光纤地震学,将分布式光纤传感技术应用于地震监测、断层结构探测、浅地表成像、城市地下空间等领域。
    个人简介

    李泽峰,中国科学技术大学特任研究员,博士生导师,入选中国科学院百人计划青年项目。2012年中国科学技术大学本科毕业,2017年美国佐治亚理工学院获得博士学位, 2017-2020年在美国加州理工学院地震学实验室从事博士后研究。研究兴趣主要在将人工智能应用于地震科学发现(AI for earthquake science)、布式光纤传感(DAS)的地震学应用。至今在AGU Advances, GRL, EPSL期刊发表论文20余篇,第一或通讯作者16篇(具体见GoogleScholar)。

    2019年至今担任美国地震学会期刊Seismological Research Letters副主编,从2021年起担任地球物理学报,Earthquake Science,Earthquake Research Advances,RAS Techniques and Instruments等期刊编委,现任中国地震学会青年工作委员会委员。近期成果入选2021年中国光学领域十大社会影响力事件,AGU Eos亮点文章和编辑点评推荐,被科技日报头版、中国科学报头版、人民日报客户端、澎湃新闻、科学网等多家媒体报道。

    学术经历

    2020年9月-至今:中国科学技术大学,地球和空间科学学院,特任研究员

    2017年9月-2020年8月:美国加州理工学院,地震学实验室,博士后

    2012年8月-2017年8月:美国佐治亚理工学院,地球和大气科学系,地球物理学博士

    2008年8月-2012年6月:中国科学技术大学,地球和空间科学学院,地球物理学本科

    荣誉奖项

    2022年 Earthquake Science优秀青年专家论文

    2022年 Earthquake Science优秀编委

    2021年 研究成果入选2021中国光学十大社会影响力事件

    2020年 入选中国科学院百人计划青年项目

    2016年 佐治亚理工学院地球与大气科学系Kurt Frankel Award

    2009-2011年 中国科学技术大学优秀学生奖学金

    发表论文

    *Corresponding author, #Student advised/co-advised

    Cui, X.#, Z. Li*, Y. Hu, Similarity of shallow and deep earthquakes in seismic moment release, submitted.

    Zhu, J.#, Z. Li*, L. Fang, USTC-Pickers: a Unified Set of seismic phase pickers Transfer learned for China, submitted.

    Zhang, J., Z. Li, J. Zhang*, Simultaneous Seismic Phase Picking and Polarity Determination with an Attention-based Neural Network, submitted.

    Zhu, J.#, L. Fang, F. Miao, L. Fan, J. Zhang, Z. Li*, Deep learning and transfer learning of earthquake and quarry-blast discrimination: Applications to southern California and eastern Kentucky, in revision. [LINK]

    24. Ma, S.#, Z. Li*, W. Wang (2022), Machine learning of source spectra for large earthquakes, Geophys. J. Int., 231(1), 692–702. [LINK]

    23. Li, Z.* (2022), A generic model of global earthquake rupture characteristics revealed by machine learning, Geophys. Res. Lett., 49(8), e2021GL096464. [LINK][AGU公众号][科大新闻][科技日报(头版)][中国科学报(头版)][人民日报客户端][安徽日报][中国新闻网][中安在线][澎湃新闻]

    22. Atterholt, J.*, Z. Zhan, Z. Shen, Z. Li (2022), A unified wavefield-partitioning approach for distributed acoustic sensing, Geophys. J. Int., 228(2), 1410-1418. [LINK]

    21. Li, Z.* (2021b), Recent advances in earthquake monitoring II: Emergence of next-generation intelligent systems, Earthquake Science, 34, doi: 10.29382/eqs-2021-0054. [LINK] [Companion paper with #18]

    20. Cui, X#, Z. Li*, and H. Huang (2021), Subdivision of seismicity beneath the summit region of Kilauea volcano: Implications for the preparation process of the 2018 eruption, Geophys. Res. Lett., 48(20), e2021GL094698. [LINK][AGU公众号]

    19. Li, Z.*, Z. Shen, Y. Yang, E. Williams, X. Wang, and Z. Zhan* (2021), Rapid response to the 2019 Ridgecrest earthquake with distributed acoustic sensing, AGU Advances, 2, e2021AV000395, doi: 10.1029/2021AV000395.[LINK][EosHighlight][AGU公众号][科技日报][科学网][2021Light10][科大新闻]

    18. Li, Z.* (2021a), Recent advances in earthquake monitoring I: Ongoing revolution of seismic instrumentation, Earthquake Science, 34(2), 177-188, doi: 10.29382/eqs-2021-0011. [LINK][EQS公众号][EQS优秀青年专家论文]

    17. Yin, J., Z. Li*, M. Denolle (2021), Source time function clustering reveals patterns in earthquake dynamics, Seismo. Res. Lett., 92, 2343-2353, doi:10.1785/0220200403. [LINK]

    16. Cheng, Y.*, Y. Ben-Zion, F. Brenguier, C. W. Johnson, Z. Li, P. Share, and F. Vernon (2020), An automated method for developing a catalog of small earthquakes using data of a dense seismic array and nearby stations, Seismo. Res. Lett., 91(5), 2862-2871, doi: 10.1785/0220200134. [LINK]

    15. Li, Z.*, E. Hauksson, and J. Andrews (2019), Methods for amplitude calibration and orientation discrepancy measurement: Comparing co-located sensors of different types in Southern California Seismic Network, Bull. Seismol. Soc. Am., 109(4), 1563–1570, doi: 10.1785/0120190019. [LINK]

    14. Zhu, L.*, Z. Peng, J. McClellan, C. Li, D. Yao, Z. Li., and L. Fang (2019), Deep learning for seismic phase detection and picking in the aftershock zone of the 2008 Mw 7.9 Wenchuan Earthquake, Phys. Earth Planet. Inter., 293, 106261, doi: 10.1016/j.pepi.2019.05.004. [LINK]

    13. Li, Z.*, E. Hauksson, T. Heaton, L. Rivera, and J. Andrews (2019), Monitoring data quality by comparing co-located broadband and strong-motion waveforms in Southern California Seismic Network, Seismo. Res. Lett. , 90(2A), 699-707, doi: 10.1785/0220180331.[LINK]

    12. Meier, M.-A.*, Z. Ross, A. Ramachandran, A. Balakrishna, S. Nair, P. Kundzicz, Z. Li, E. Hauksson, J. Andrews (2019), Reliable real-time seismic signal/noise discrimination with machine learning, J. Geophys. Res. Solid Earth, 124, 788-800, doi:10.1029/2018JB016661. [LINK]

    11. Li, Z.*, and Z. Zhan (2018), Pushing the limit of earthquake detection with distributed acoustic sensing and template matching: A case study at the Brady geothermal field, Geophys. J. Int., 215, 1583-1593, doi: 10.1093/gji/ggy359. [LINK]

    10. Li, C.*, Z. Li, Z. Peng, C. Zhang, N. Nakata, and T. Sickbert (2018), Long-period long-duration events detected by the IRIS community wavefield demonstration experiment in Oklahoma: Tremor or train signals?, Seismo. Res. Lett., 89, 1641-1651, doi: 10.1785/02201080081. [LINK]

    9. Li, Z.*, M.-A. Meier, E. Hauksson, Z. Zhan, and J. Andrews (2018), Machine learning seismic wave discrimination: Application to earthquake early warning, Geophys. Res. Lett., 45, 4773-4779. doi: 10.1029/2018GL077870. [LINK]

    8. Li, Z.*, Z. Peng, D. Hollis, L. Zhu, J. McClellan (2018), High-resolution seismic event detection using local similarity for Large-N arrays, Sci. Rep., 8, 1646. doi:10.1038/s41598-018-19728-w. [LINK]

    7. Li, Z.*, and Z. Peng (2017), Stress- and structure-induced anisotropy in Southern California from two-decades of shear-wave splitting measurements, Geophys. Res. Lett., 44, 9607-9614. doi: 10.1002/2017GL075163. [LINK]

    6. Li, Z.*, and Z. Peng (2016), An automatic phase picker for local earthquakes with predetermined locations: Combining a signal-to-noise ratio detector with 1D velocity model inversion, Seismol. Res. Lett., 87(6), 1397-1405, doi: 10.1785/0220160027. [LINK]

    5. Li, Z.*, and Z. Peng (2016), Automatic identification of fault zone head waves and direct P waves and its application in the Parkfield section of the San Andreas Fault, California, Geophys. J. Int., 250, 1326-1341, doi: 10.1093/gji/ggw082. [LINK]

    4. Li, Z.*, Z. Peng, Y. Ben-Zion, and F. Vernon (2015), Spatial variations of shear-wave anisotropy near the San Jacinto Fault Zone in southern California, J. Geophys. Res. Solid Earth, 120, 8334-8347, doi: 10.1002/2015JB012483. [LINK]

    3. Yang, W.,* Z. Peng, B. Wang, Z. Li, and S. Yuan (2015), Velocity contrast along the rupture zone of the 2010 Mw6.9 Yushu, China earthquake from systematic analysis of fault zone head waves, Earth Planet. Sci. Lett., 416, 91-97, doi: 10.1016/j.epsl.2015.01.043. [LINK]

    2. Yang, H.*, Z. Li, Z. Peng, Y. Ben-Zion, and F. Vernon (2014), Low velocity zones along the San Jacinto Fault, Southern California, from body waves recorded in dense linear arrays, J. Geophys. Res. Solid Earth, 119, 8976-8990, doi: 10.1002/2014JB011548. [LINK]

    1. Li, Z., H. Zhang*, and Z. Peng (2014), Structure-controlled seismic anisotropy along the Karadere-Duzce branch of the north Anatolian fault revealed by shear-wave splitting tomography, Earth Planet. Sci. Lett., 391, 319-326, doi: 10.1016/j.epsl.2014.01.046. [LINK]

    Non-peer-reviewed:

    1. Daniel T. Trugman, Lihua Fang, Jonathan Ajo‐Franklin, Avinash Nayak, Zefeng Li* (2022), Preface to the Focus Section on Big Data Problems in Seismology. Seismological Research Letters 2022;; 93 (5): 2423–2425. doi: https://doi.org/10.1785/0220220219. [LINK]


    2. Bergen, K., T. Yang, and Z. Li (2019), Preface to the Focus Section on Machine Learning in Seismology. Seismological Research Letters, 90 (2A): 477–480. doi: https://doi.org/10.1785/0220190018 [LINK]

    3. Li, Z. (2017), Fault zone imaging and earthquake detection with dense seismic arrays, PhD Thesis at Georgia Institute of Technology. [LINK]


    "雷竞技app官方版下载
    <bdo id="o62iu"></bdo>
    <bdo id="o62iu"></bdo>
  • <bdo id="o62iu"><blockquote id="o62iu"></blockquote></bdo>
  • <bdo id="o62iu"><optgroup id="o62iu"></optgroup></bdo>
    <code id="o62iu"><nav id="o62iu"></nav></code>
    <code id="o62iu"><samp id="o62iu"></samp></code>
  • "